A

.

JA \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

A

Vs

L \\\

y

y

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

/ Z l\\\

OF

SOCIETY

OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTIONS

PHILOSOPHICAL THE ROYAL
OF SOCIETY

Stability of Forced Steady Solitary Waves

R. Camassa and T. Yao-Tsu Wu

Phil. Trans. R. Soc. Lond. A 1991 337, 429-466
doi: 10.1098/rsta.1991.0133

i i i Receive free email alerts when new articles cite this article - sign up in
Email alerti ng service the box at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to:

http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1991 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;337/1648/429&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/337/1648/429.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

Stability of forced steady solitary waves

By R. CamMassat axp T. Yao-rsu Wu

Diviston of Engineering and Applied Science, California Institute of Technology,
Pasadena, California 91125, U.S.A.

é;i:iil Contents
=3, 0 PAGE
< > 1. Introduction 430
é —~ 2. Forced solitary waves 432
= 3. The stability of forced solitary waves 433
|
O 4. Linear stability analysis 435
o @) (a) A perturbation expansion for the eigenvalues 436
= (b) Global spectral behaviour 438
2"2 5. Nonlinear stability 442
%9 6. Existence of multiple stationary solutions 445
85 w 7. Numerical simulations 448
85; ° (a) The periodical bifurcating (transcritical) regime 449
=,<Z< (b) The aperiodical bifurcating régime 453
L (c) The stable supercritical régime 455
o= P
8. Conclusions 456
Appendix A. Local spectral analysis 457
(a) The inner problem for the case of m =2, p,, = m* =4 458
(b) The outer problem for the case of u = 4 459
(¢) Imner and outer expansions for u =1, 9 and other cases 460
Appendix B. Global spectral analysis 461
Appendix C. A hamiltonian system and its conservation laws 463
References 465

This paper explores the basic mechanism underlying the remarkable phenomenon
that a forcing excitation stationary in character and sustained at near resonance in
a shallow channel of uniform water depth generates a non-stationary response in the
form of a sequential upstream emission of solitary waves. Adopting the forced
Korteweg—de Vries (fKdV) model and using two of its steady forced solitary wave
solutions as primary flows, the stability of these two transcritical steady motions is
investigated, and their bifurcation diagrams relating these solutions to other
stationary solutions determined, with the forcing held fixed. The corresponding
forcing functions are characterized by a velocity parameter for one, and an
amplitude parameter for the other of the steadily moving excitations.
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430 R. Camassa and T. Yao-tsu Wu

The linear stability analysis is first pursued for small arbitrary perturbations of the
primary flow, leading to a singular, non-self-adjoint eigenvalue problem, which is
solved by applying techniques of matched asymptotic expansions with suitable
multiscales for singular perturbations, about the isolated bifurcation points of the
parametric space pertaining to the stationary perturbations. The eigenvalues and
_eigenfunctions are then obtained for the full range of the parameters by numerical
continuation of the eigenvalues branching off from the stationary-perturbation
solutions that were determined by the local analysis. A highly accurate numerical
scheme is developed as required for this purpose.

The linear stability analysis identifies three categories of evolution of infinitesimal
disturbances superimposed to the steady state; they occur in three different
parametric régimes. The first, called periodical bifurcating régime, is characterized
by complex eigenvalues, with a real part much smaller than the imaginary part,
signifying that small departures from the steady state will oscillate with an
amplitude growing at a slow exponential rate. In the second régime, called the
aperiodical bifurcating régime, the eigenvalues are purely real, implying that small
departures from the steady state grow exponentially. For the third régime, linear
stability theory is unable to find any eigenvalue (including zero) to exist. In this last
case, however, a nonlinear analysis based on the functional hamiltonian formulation
is possible, with the hamiltonian conserved for forcings of constant velocity, and the
steady state is shown to be stable. For this reason, this régime will be called the stable
supercritical régime.

Finally, extensive numerical simulations using various finite difference schemes
are carried out to find how the solution evolves once the instability of the solution
‘manifests, with results fully confirming the predictions obtained analytically for the
various régimes. The numerical simulations show that the instability in the
periodical bifurcating régime, for the type of forcings considered, causes the steady
solutions to evolve into the phenomenon of periodical production of upstream-
advancing solitary waves.

1. Introduction

Considerable attention has been paid by recent studies to the phenomenon of
nonlinear; dispersive waves generated in a soliton-bearing physical system by a
moving forcing disturbance sustained at resonance. A remarkable feature of the
phenomenon is that a range of physical parameters exists in which a forcing
excitation moving steadily with a near critical velocity in a water channel of finite
depth generates a non-stationary response in the form of a sequential production of
upstream-advancing solitary waves, in a process that may continue indefinitely. An
example is given by the effects of a submerged topography<or a surface pressure
moving with a constant transcritical velocity over the top free surface of a water
layer of uniform depth. Analogous phenomena can be expected to occur in various
other soliton-supporting systems. A review of history and literature can be found in
Wu (1987) and Lee et al. (1989).

A few theoretical models have been proposed for the description of this general
class of motion. One of them is the generalized Boussinesq (gB) equation introduced
by Wu (1979, 1981), which is applicable to wave generation and propagation by
three-dimensional forcing distributions moving in arbitrary manner through a

Phil. Trans. R. Soc. Lond. A (1991)
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Stability of forced steady solitary waves 431

medium which may vary gradually and slowly in two horizontal dimensions. This
model was first applied by Wu & Wu (1982) to predict the periodic production of
solitary waves by steadily moving two-dimensional forcing disturbances sustained at
resonance and later by Wu & Wu (1988) for some three-dimensional disturbances.
Another approach is based on the director-sheet model of Green and Naghdi, as
adopted by Ertekin et al. (1984, 1986) to calculate forced generations of solitary
waves. The most appealing theoretical model is perhaps the forced Korteweg de Vries
(fKdV) equation which characterizes unidirectional, weakly nonlinear and weakly
dispersive long waves being weakly forced at resonance. Because of its simplicity in
structure, this model has been used by Akylas (1984), Cole (1985) and Malomed
(1988) for the point forcing and by Lee (1985), Lee et al. (1988, 1989) for distributed
forcings. Comparisons between theory and experiment have been carefully examined
by Lee et al. (1989), with results showing a broad agreement between experiment and
various physical models in spite of some refined differences between these models. In
addition, the roles played by the nonlinear and dispersive effects during the periodic
generation of upstream-advancing waves can be more directly evaluated by
integration with mass and energy considerations based on the fKdV model, as
illustrated by Wu (1985), Grimshaw & Smyth (1986), Wu (1987) and by Lee et al.
(1989). The relative importance of the nonlinear and dispersive effects has been
investigated by Kevorkian & Yu (1989) using the Boussinesq approximation for an
isolated rigid bump held fixed in an otherwise uniform stream in a rectangular
channel of uniform depth. Their study includes the limiting case of nonlinear non-
dispersive wave theory and the case of time-dependent Froude number. The same
phenomenon has also been found to occur in a uniform channel of rectangular or
arbitrary cross-sectional shape when an obstacle moves along the channel with a
transcritical velocity (Teng 1990), like a boat moving in a shallow canal. However,
the basic mechanism underlying the manifestation of the periodically produced,
upstream-advancing waves remains so far unexplained.

The main object of this study is to explore the basic mechanism in question. It is
pursued here by first considering the stability of two primary flows which are simple
solutions of the forced-steady-solitary-wave family found by Wu (1987) for the fKdV
model, equation (2.1) of §2. The first, case (i), given by (2.4) below, is characterized
by a speed parameter pertaining to the steady transcritical velocity of translation of
the forcing function, and the other, case (ii), given by (2.5) below, is controlled by an
amplitude parameter characterizing the strength of a supercritical forcing dis-
tribution. Both solutions contain the classical free solitary wave of the KdV family
as a special limit to which they reduce as the forcing vanishes. The second solution
was proposed by Patoine & Warn (1982) to simulate a meteorological phenomenon.

In §3, a stability theory is formulated for the two forced steady solitary waves
as primary flows, and a simple a priori estimate of the rate of growth of instabilities
based on energy-momentum balance are provided. The linear stability analysis is
then carried out. An eigenvalue problem is obtained by separation of variables for
the fKdV equation linearized around the primary flows, as discussed in §4. The
difficulty of this eigenvalue problem is partly due to the fact that the governing
ordinary differential equation is of the third order and non-self-adjoint, and the
analysis of these problems has remained a subject not well developed mathematically.
The main objective of this section is to understand the structure of the (discrete)
eigenvalue spectrum and to describe how this varies with respect to the parameters,
i.e. the velocity and strength of the forcing. This is achieved by using a perturbation
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432 R. Camassa and T. Yao-tsu Wu

approach in a neighbourhood of isolated points in the parameter space where the
eigenfunctions corresponding to zero eigenvalues can be computed in closed form. In
this way several ‘stems’ of branches of eigenvalues are determined and the global
structure of the spectrum is then constructed by numerical continuation over the
range of parametric values in which this is possible.

There exist régimes, or intervals of parameter values, in which no eigenvalue can
be found by the methods used in §4. Physically speaking, these régimes correspond
to the situation in which the corresponding forcings are sufficiently ‘weak’ or their
speed is highly supercritical. In these régimes, however, we are able to utilize the
hamiltonian property of the system and show in §5 that the steady states in both
cases (i) and (ii) satisfy a sufficiency criterion implying stability on nonlinear theory.

Further study along this direction leads to the determination of bifurcation points
of the primary motions for forcings of type (i) to other stationary solutions; this is
first shown in §6 for a neighbourhood of special parameter values (the ones identified
by the linear analysis), where by using regular perturbation expansions we obtain a
new stable stationary solution.

Finally, detailed features of the transient solutions through bifurcation are
illustrated in §7, where extensive numerical simulations and explorations for the
various cases specified by the stability analysis are performed. The results of our
numerical simulations are found to confirm fully the predictions obtained
analytically for the various régimes explored.

2. Forced solitary waves

In long-wave theory, the fKdV equation is particularly suitable for describing
weakly nonlinear, weakly dispersive and weakly forced waves in a shallow water of
uniform depth and can be written as

where {(,) is the free surface elevation of the water layer and the external forcing
P(x,t) is given by the sum of the applied surface pressure distribution and bottom
topography (see Wu 1987 ; Lee 1985), which may be an arbitrary function of (z, t) but
here will be a localized smooth function of x only, though may be impulsively started.
Here xe R, te (0, 4+ 00) and subscripts denote partial differentiation. Equation (2.1)
is in non-dimensional form in which the length, time and pressure are scaled by #,
vV (h/g), and pgh, respectively, with A, g, p being the undisturbed water depth,
gravity acceleration and uniform fluid density, respectively. The reference frame
used for (2.1) is fixed with the steadily moving disturbance, in which the fluid is
moving to the right with uniform constant velocity U at x = — o0, corresponding to
the Froude number ' = U/+/(gh), and the forcing distribution is fixed for ¢ > 0. The
ranges of the physical parameters in which the model is derived (see Lee 1985; Wu
1987) satisfy the following estimates

e= (/AP <1, a/h=0(E), |Pl=0@E)), |F—1|=0(@), (2.2)

where A is a typical wavelength, and a is a typical wave amplitude. The second
equation in (2.2) represents the condition that the dispersive and nonlinear effects are
so properly balanced that the phenomena can be described by the present theory.

Phil. Trans. R. Soc. Lond. A (1991)
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Stability of forced steady solitary waves 433
The stationary solutions of (2.1) that vanish at infinity satisfy the equation
(F=1){—30—5e = P(), (2.3)

which is obtained from (2.1) by dropping the time derivative and integrating it once
in . Among the possible solutions of (2.3) for various choices of the forcing P, soliton-
like solutions ¢  of the form

Lz, t) = & (x) = asech? (kx)

are of particular interest here, and they occur with the forcing term assuming a
sech? (kx) or a sech* (kx) distribution such that (Wu 1987):

(i) {(x) = $k*sech? (kx), 1 ”
P(x) = 8k (F — 1 — 2k?) sech? (kx); J (2.
(ii) ¢(x) = asech? (kx), “l
2.5)

P(2) = a(k*—ja) sech (kz), F—1 = 3¢

In these equations, the Froude number ¥ in (2.4) and amplitude « in (2.5) can be
regarded as a free parameter for case (i) and (ii) respectively, in addition to the
parameter k£ which scales the length of the disturbance. We note that for case (i) the
flow can be either supercritical (¥ > 1) or subcritical (¥ < 1); the forcing amplitude,
b, say, is b; < 0 or > 0 according as (¥ —1) < or > 2k?, while the resulting sech? (x)-
wave always remains positive in polarity. For case (ii), the flow can only be
supercritical ; the forcing amplitude reaches its maximum of }k* at the wave
amplitude of a = $k?, and for forcing amplitudes below this maximum, there exist
two branches of wave amplitudes a for a given forcing. Nevertheless, the solution (i),
or (ii), is a unique function of ¥ in case (i), or of @ in case (ii), and this will be so
regarded here. Finally, we note that both solutions reduce, with the forcing
vanishing, to the free soliton solution

¢, = tk*sech? (kx), F—1 =22, (2.6)

By the scaling rule (2.2), k should be a small quantity of order O(&). Solutions (2.4)
and (2.5) are among the family of forced steady solitary waves found by Wu (1987),
while solution (2.5) was originally reported by Patoine & Warn (1982).

According to the well-known uniqueness property for the initial value problem of
the KdV equation on the real line of , these steady solitary waves will be unique
solutions of the fKdV equation (2.1), each of which may remain permanent in shape
provided

8z, 0) = L (). (2.7)

The question of whether or not these solutions will also have a physical significance
when being perturbed is closely related to their stability properties, and this is the
central problem to be investigated next.

3. The stability of forced solitary waves

Equation (2.1) can be cast in homogeneous form for any perturbation %(z, t) of the
stationary solutions { corresponding to the P(x) of (2.4) or (2.5) above, so that

L, t) = &) +n(x, t), (3.1)
Phil. Trans. R. Soc. Lond. A (1991)
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434 R. Camassa and T. Yao-tsu Wu
then by (2.1) y satisfies the nonlinear evolution equation,
+(0/02) [(F = 1) p—39* =595, — 3511 = 0. (3:2)
In terms of the similarity variables,
¥ =kx, =% 9 =k?m F—-1=k?F-1), (3.3)
the parameter k is eliminated from equation (3.2), giving, after omitting the primes,
+(0/02) [(n—asech® () y —§9° =, ] = 0, (3.4)
where p=6F"—1) and a =12 for forcing (i) (3.5)
and u=4 and a=9a/k* for forcing (ii). (3.6)

Since k is of O(e#), the free parameters x and « are of O(1) and can take on values in
a relatively broad range even with F and a being so constrained by (2.2).

The perturbed motion governed by (3.4) has two leading-order conservation laws.
The first is the invariance of the excess mass m,

d—m-() m = f (x,t)d

which is the first integral of (3.4) with respect to « under the regularity conditions at
infinity. Therefore,

+00
m = const. = m,, m,= J 7(x, 0) d, (3.7)

-0

m, being the initial excess mass. The second relation is for the ‘energy’ conservation,

M 00 +00
%f;:ogj n;sechz( yde, K J 7?de, (3.8)

which is the first integral of the product of (3.4) with #. Expressing » = y,+7,,
Ne(2, t) and n,(x,t) being even and odd functions of z, we have

d + 00 + 00 d .

Tl (770+770)d9c 20 f_w Ne 170@sech2 (x)dx = W, (3.9)
which signifies that the ‘total energy ’ pertaining to the motion # increases at the rate
W which is related to the rate of working by the external forcing on the system. A
sufficient condition for & to be invariant, or W = 0, is that 7 is purely even or purely
odd. In other words, £ may vary only when % has both even and odd components.
In such cases, the maximum rate of energy growth is readily found from (3.8) as

dE/dt < BE, or E(t) < E(0)e”, f=4a/3+/3,

B being the maximum rate of growth for KE(f), equal to the maximum of
o (d/dx)sech® (x) over the real x. Thus, the energy E(t) can never grow at a rate faster
than f.

In the following sections, we often use another parameter, .7, defined to be the
initial amplitude of {(x, 0), i.e. & = {(0, 0) (assumed to be the extremum variation of
{(=,0)), as a measure of the perturbation strength #(z, 0). In terms of this parameter

Phil. Trans. R. Soc. Lond. A (1991)
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Stability of forced steady solitary waves 435

one can study the boundary of the ‘basin of stability ’ in the (u, &/)-space for forcings
of type (i), or in the (a, o/)-space for forcing (ii).

4. Linear stability analysis

Linear stability analysis of the nonlinear system (3.4)—(3.6) is of significance since
a state of growth or decay of y(x, t) with a non-zero rate evaluated on linear theory
cannot be altered even when additional nonlinear effects are taken into account, at
least for as long as 7 remains small. The stability of the forced solitary waves
versus small perturbation can be determined by the linearized form of equation (3.4),

7, + (/) [y — 15, — oy sech® ()] = 0. (4.1)
By introducing the separation of variables
(@, t) = e”f(x), (4.2)

where the constant ¢ and the function f may be complex, the real part of » being
understood for physical interpretation, we obtain the following equation for f(x)

d/dx [d3f/da®+ (e sech? (x) —p) f] = of, (4.3)
or, in operator form &L, () f=df, (4.4)
where 2, () = d/dx[d?/dx® + (asech® (x) — )], (4.5)
and the boundary conditions for f will be taken to be regular at infinity, i.e.
f™(x)——0, exponentially fast, for at least n =0,1,2, (4.6)
laf>c0
where f™(x) denotes the nth derivative of f(x). We note that &, , is a non-self-

adjoint operator. Equations (4.4-4.6) constitute an eigenvalue problem in o, and
the stability is determined by the signature of the real part of the eigenvalues,
Reo(u, o) = 0 giving the boundary of neutral stability in the (u, ) space. We remark
that when the stationary solution is neutrally stable, no statement can be made
regarding the nonlinear stability of the perturbed waves.

This eigenvalue problem has several features of basic interest. First, the
symmetries possessed by the differential operator in (4.5), namely,

< v)=—2, ), [ZL,.@=2Z,,.(), (4.7)

Wy oL( -
where (*)* denotes the complex conjugation, imply that if (4.4) has an eigenvalue o
and an eigenfunction f(z), it must also possess the eigenvalues —o and +o*, with
their corresponding eigenfunctions f(—x) and f*(+x), respectively. Therefore we
have instability for y whenever an eigenvalue with non-vanishing real part exists.
Second, the regularity conditions specified in (4.6) imply, upon integration of (4.3),
that

,u,oc(

+00
J flx)de =0 wunless o =0, (4.8)

that is, for non-zero eigenvalues, the excess mass of the forced solitary waves cannot
be changed by perturbations of the form (4.2). This integral condition also shows that
the proper eigenfunctions of (4.4) cannot constitute a basis in the linear space of C?
functions that satisfy the regularity conditions (4.6) at infinity.

Phil. Trans. R. Soc. Lond. A (1991)
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436 R. Camassa and T. Yao-tsu Wu
We define the inner product (f,g) between two functions f(x) and g(x) by

(f9)= ﬁ J(@) g*(x) da. (4.9)

Two functions f and ¢ are said to be orthogonal if (f,g) = 0. By integration by parts
of the inner product ((Z, ,—~0)f,g), in which the terms Df(x) D'g*(x), i,j = 0,1,2,
where D = d/dx, are assumed to vanish for x—>00, we find this product equal to
(f, (,Z’;,a—a*)g), and thus obtain the adjoint equation of (4.4) as

LX) g = o*g, (4.10)

where L (x) = —[d*/da*+ (asech? (x) — )] d/dw. (4.11)

We note that D} ,=—%, D. Hence if f(x) is an elgenfunctlon of (4.4) with
eigenvalue o, then g( ) deﬁned as the integral of f*(

ff * (4.12)

is a solution of the adjoint equation (4.10) with o* its corresponding eigenvalue; ¢ is
called the adjoint eigenfunction of f. Further, it can be shown that f and its adjoint
function g are in general not orthogonal to each other, i.e. (f,g) # 0, but

(c—0*)(f,9%) =0, (4.13)

of which the implications are self-evident.

The stationary solutions of (4.1) (corresponding to o = 0) play a significant role in
the present stability analysis; they can be determined explicitly since equation (4.4)
can be integrated once, reducing the problem to that of a Schrédinger equation with
a sech? (x)-potential :

— (K, +p) f = d%f/da? + [asech? (x) — p] f(z) (4.14)

Such eigenvalue problems are, of course, quite familiar in quantum mechanics (see
Landau & Lifshitz 1958, §21). In general, solutions to this equation which decay at
infinity only exist for a discrete set of parameter values y and a, say {u,,} and {a,},
for m, v belonging to some interval of integers.

It is possible to take advantage of the knowledge of the eigenfunctions
corresponding to zero eigenvalues. First, we introduce a small parameter, e,
measuring the distance of 4 or « from the special values {x,,} or {a,}, and then seek
an expression for the eigenvalue o (and the corresponding eigenfunction) as an
asymptotic series in €. In this way the initial portion of branches o (4, a) emanating
from o =0 at pu,, and a, can be determined. This approach is outlined in the next
section, with most of the details reported in Appendix A. Further, we notice that the
eigenvalue problem (4.3) can be cast in a form which facilitates numerical
computations with a high degree of accuracy, and the branches determined by the
perturbation approach can be continued numerically, as illustrated in §4b6 and
Appendix B.

(a) A perturbation expansion for the eigenvalues

For the definiteness, we choose to work with the forcing (i) case (i.e. set o« = 12, see
(3.5)). The analysis pertaining to case (ii) is similar and the main results are reported
in Appendix A. As described in Appendix A, the special parameter values {u,,} at

Phil. Trans. R. Soc. Lond. A (1991)
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Stabelity of forced steady solitary waves 437

which (4.4) admits an eigenvalue o =0 are in this case (« = 12) given by u,, =
m® = 1,4 and 9. The corresponding eigenfunctions (i.e. solutions of (4.14) regular at
infinity) are

pr=1, fylws ) = sech (z) (5 tanh? (2) — 1), (4.15)
fta =4, fylw:p,) = sech? (z) tanh (), (4.16)
frs =9, folwspy) = sech? (), (4.17)

up to an arbitrary multiplicative constant. Since the eigenvalue o is zero, these
eigenfunctions need not satisfy the integral condition (4.8).

Assuming that the spectrum depends continuously on the parameters, we can
search for a perturbation expansion of the eigenvalues and eigenfunctions when u is
in a neighbourhood of #,,. Defining

H=p,+s€, 0<e<l, s=+1, m=1,2and3, (4.18)
we can rewrite (4.4) as
&L, f—sedf/de = a(u)f, (4.19)
where we have dropped the subscript « as being understood to be 12. Assume
o(p) = Pi(€) o1+ Pyl€) o3+ ..., (4.20)
J@; ) = folx)+i(e) fi(@) + Prale) fol) + ... (4.21)

where fy(x) represents the set of fi(x;u,) in (4.15)~(4.17), and ¢,(e), ¥;(e) >0 as
€=>0, ¢;1, =0(¢,), etc., j=1,2,.... The terms of the product of then show that
whenever o(u) # 0 the integral condition (4.8) can only be satisfied by the f, of (4.16),
but not by the f, given in (4.15) and (4.17), and therefore it can already be seen that
the perturbation expansion is a singular one. Indeed, for the ‘even’ function cases of
(4.15) and (4.17), the eigenfunction corresponding to zero eigenvalue has an excess
‘mass’ (which is the integral in (4.8)) different from zero whereas the perturbed one
will be required to satisfy (4.8) as soon as o # 0 due to the perturbation.

The details of how this difficulty can be overcome using matched asymptotics and
‘two-timing’ methods are reported in Appendix A. Here we simply state the result
pertaining to the eigenvalue ¢ in a neighbourhood of the x,,s. The case p = 4+ s¢ is
different from the other two, both in the scaling with respect to ¢ (i.e. the ¢s in (4.20))
and in the fact that an eigenvalue branch can be determined both on the right and
on the left of 4 = 4. We have in fact,

o= e fesi—eks+O0(ed), (4.22)

which is purely real for u > 4 (s > 0), of order O(¢?) in magnitude, and is complex for
# < 4 (s < 0), with its real part being of O(¢) and its imaginary part of O(e#). The non-
vanishing real part of ¢ will imply instability of the perturbed motion » for g in a
neighbourhood of 4, but with different rates of growth for 4 > 4 and 4 < 4, as will be
further discussed below.

For the other two special values 4 = 1,9 we find (see Appendix A) that branches
of eigenvalues emanating from o = 0 exist only to the left of these us and are purely
real, of order O(e):

o(u) =€0,(fy,)+O0(e?)
=elBn24+0(?), forpu=1—¢
eBr24+0(e?), forpu=9—c. (4.23)
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Having determined the local structure of the discrete spectrum of the operator
(4.5) for forcing (i), we follow, by numerical computation, the branches of the
eigenvalues thus found beyond the small-parameter neighbourhoods where the
perturbation approach can no longer hold valid.

(b) Global spectral behaviour

The relative simplicity of the operator £, ,, (4.5), makes it possible to consider
values of the parameters y and o away from the special values pertaining to the
stationary motions listed above, and to find exact solutions numerically to the
eigenvalue problem of (4.3) for the whole range of the parameters.

Keeping the notation compact, we consider type (i) forcing first. By setting
o =12, and by using the transformation

=1 —tanh (@), flz) = fl@
equation (4.3) becomes (dropping the ‘hats’ henceforth

df | 3(1—22)dY [10 f—6(1—22) ]df [1221—2)(1—2z)
dz?  z(1—2z) dz? 42%(1 —2)? dz 2(1—2)®

), (4.24)
)

} f=0. (4.25)

This is a third-order ordinary differential equation with three regular singularities at
z =0, 1, oo, and the boundary conditions (4.6) are now

J10) = f(1) = 0. (4.26)
The indicial equation at z = 0 is
K*—tuk +i0 =0, (4.27)

and in order to satisfy (4.26) we retain only the roots whose real part is greater than
zero. If no roots are coincident or differ by an integer number, we only need to
consider the case when one of them, say «,, has a real part greater than zero. In fact,
due to the symmetry (4.7), the indicial equation at z = 1 is obtained from (4.24) by
changing o into —o, so that x; > —«;, where «;,j = 1, 2, 3 are the solutions of (4.27),
for which we note that «, 4+«,+«, = 0. A function f which satisfies (4.25) is therefore
an eigenfunction for (4.3) if we can find coefficients of linear combination ¢,, ¢, in such
a way that it has the following behaviour in a neighbourhood of the singular points,

fe) ~ {z"‘gl(Z), ) _ z~0, (4.28)
Co(1—=2)"hy(1 —2)+cy(1 —2) Sshy(1—2), z~1,

where g, and h,, A, are analytic functions in a neighbourhood of 2 =0 and z =1
respectively. Here {k;};_, , ; are three solutions of (4.27) with Rex, >0, Rex, <
Rek, < 0. (The other case with Rex, > Rek, > 0, Rek, < 0 is entirely analogous.)
The radius of convergence of the power series for g, (z), h,(z) and %,(z) can be expected to
be 1, since the only (regular) singularities of the differential equation these functions
satisfy are at 0, 1. Furthermore, the coefficients of the power series are determined by
a second-order difference equation with variable coefficients. Thus, we can very
efficiently solve for the coefficients numerically and sum the power series up to some
(large) number of terms to find very accurate values for g, and the As. Requiring that
the two expressions for f(z) in (4.28) match up to the second derivatives at some point
z between 0 and 1 results in an equation for the (complex) spectral parameter o,
which can then be solved by using a Newton—Raphson scheme to determine the
eigenvalue. The details of the procedure outlined above are reported in Appendix B.
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Figure 1. () The real part of jo against p for forcing (i), as determined by the power series method
of §4b. (b) A blow-up of the region close to the axis Reo = 0 for —1 < u < 5. (¢) The imaginary part

of o against .
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Figure 2. The eigenfunction corresponding to the eigenvalue o = 0.2605 at 4 = 5 for forcing (i), in
terms of the independent variable z (equation (4.24)). The solid line is for 0 < 2< 0.9, the dashed
for 0.1 €2<1.0.°

Figure 3. (a) The real part of §o against o for forcing (ii), as determined by the power series method
of §4b. (b) Imaginary part of io against a.

The results pertaining to the eigenvalues so determined are shown in figure 1, while
figure 2 depicts a typical eigenfunction for 4 < u < 9. In the overlapping region
0.1 <z <0.9, the two expressions in (4.28) coincide up to six significant digits, when
the eigenvalues are evaluated with a series truncated after 200 terms. Figure 1 shows
that for the branch originating at u = 4, o has a small real part for 4 < 4 and a much
greater one for 4 < u <9, as expected by the previous perturbation analysis. We
remark that the real part of o remains small throughout the range u < 4, with its
maximum still two orders of magnitude smaller than the imaginary part, and can
only be found by high precision numerical schemes. In fact, the Galerkin expansions
we tried (Wu 1988) were insufficient to provide an estimate for it. For the region
4 <pu <9, however, the eigenvalue is found to be purely real as predicted by the
perturbation analysis, and the branch originating at # = 9 joins with the one to the
right of u = 4.
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The calculations for the forcing (ii) are quite similar and the results for the
eigenvalues are depicted in figure 3.

Numerical experiments for the full evolution equation (2.1) have completely
established the behaviour predicted by the previous spectral analysis. The inherent
error of the numerical scheme should in fact play the role of a perturbation of the
exact solutions (2.4) and (2.5). For (i) type forcings, the stationary solution (2.4) for
4 <pu <9 is indeed unstable and decays to another stationary wave of smaller
amplitude as will be shown later. The instability for 4 < 4 is driven by the real part
of the eigenvalues, o,, according to (4.2), and the previous results show that for
subcritical and critical cases, u < 0, o, is generally very small in magnitude, so small
that growth of O(1) from an initial {, wave would require a time up to order
0(10°) if the growth is seeded solely by numerical errors. However, the imaginary part
should give rise to periodic oscillations in time, and this is indeed shown by the
numerical results which oscillate at the period implied by the imaginary part of the
eigenvalue, as will be described in detail in §7.

The special case of u = 4, @ = 12 corresponds to the free solitary wave, for which
no eigenvalue different from zero can be found to exist, and the linearized analysis
reduces to the one by Jeffrey & Kakutani (1972). Therefore, in the special case of free
solitary waves, no definite conclusions can be drawn from linear theory and the
stability problem has to be resolved by nonlinear analysis, as shown by Benjamin
(1972) or by other means, including the inverse scattering formalism (Newell 1985,
$3/).

Combining the results provided by the perturbation approach, the power series
solution and the nonlinear stability analysis of the next section, we are able to
predict some structure for the spectrum of the operator £, , when o and 4 may both
vary in general, which is possible if the forcing is modified to be a linear combination
of those in (2.4) and (2.5). In fact, the results obtained around the fixed-point
responses at {s,}, {a,}, corresponding to zero eigenvalues, depend mainly on the
symmetries of the appropriate eigenfunctions (see Appendix A), which in turn are the
solutions of the Schrodinger equation (4.14), satisfying the regularity conditions at
infinity. The structure of the solutions to this latter problem, as well as for any
symmetrical ‘potential” with a minimum equal to —o at ® = 0, and decaying fast
enough at x = £ 00, is well known. Recalling that — y plays the role of an eigenvalue
in (4.14), we know that the first eigenfunction, corresponding to the lowest
‘eigenvalue’ of —u(x), is always symmetric about x =0, the second always
antisymmetric and so on in alternating fashion. The total number of ‘eigenvalues’ of
u will depend on « and on the rate of decay of the potential at co. For exponential
decay, as in —asech? (z), the number of eigenvalues is finite, and these will constitute
the special points corresponding to the {x,,} on which the analysis of §4a is based.
Thus, in general, we can say that for fixed «, a u corresponding to an even
eigenfunction, u, say, is the starting point of a branch of purely real eigenvalues of
&L, o for p < p. Similarly, from a u = u, corresponding to an odd eigenfunction, a
branch of complex eigenvalue emanates for 4 < p,, and a branch of real eigenvalues
issues forth for 4 > u,, the scaling of the real and imaginary parts with respect to the
(small) distance |u — u,| being similar to the case of y, considered above. Of course this
only holds in a neighbourhood of the special points, and the numerical power series
approach is needed to follow the branches as y varies further on. We further remark
that the above considerations are based on the orthogonality property of the terms
of the asymptotic expansion (see Appendix A). The symmetry of the solutions of the
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Figure 4. Subdivision of the parametric uv(a)-plane for the existence of eigenvalues of the operator
&, . In the shaded region no eigenvalue with real part different from zero can exist.

Schrodinger equation (4.14) after the first eigenfunction provides only a necessary
condition for these orthogonality properties to be satisfied, and modifications to the
scenario outlined above might be needed in case of spurious cancellations.

In the next section, we will show that when u > &, 7, = max{u.}, or « < mina,,
the positivity of the operator K, + u implies that no eigenvalue of &, , with real part
different from zero can exist. This finding agrees with the perturbation analysis
which shows that no eigenvalue is found to exist in a neighbourhood of this point
when u > fi,. Hence the curve u = fi,(a) provides a limit in the u, o plane for the
existence of eigenvalues with real part different from zero. We illustrate the above
results using a sech?(x) potential. It is convenient to introduce the parameter
v =v(a) by

a=ry+1),

so that, using the same transformation as for (A 1), equation (4.14) or (A 1) has the
form of a Legendre operator of order 4/ and degree v (Landau & Lifshitz 1958). It
can then be shown that the ‘eigenvalues’ u are given by

vi)—v/pu=mn, n=0,1,2 ..., (4.29)

their number being determined by the obvious requirement v(a) > n. We note that
for v = n, the solution of (4.14) is not an eigenfunction since it does not vanish at
x =+ 00. The curve (a parabola in the uv-plane)

va) =/ u (4.30)

a=va)=0 (4.31)

for 4 > 0, and the line

for 4 < 0 thus divide the uv-plane in two parts, the one above the curve (4.30) and
line (4.31) being the region that allows existence of eigenvalues with non-zero real
part. The other special points at which the eigenvalue branches described above are
generated lie on the parabolae given by (4.29) with n > 0, see figure 4.

By using the power series approach, it can be seen that, in general, the complex
eigenvalue branch originating from the ‘odd’ parabolae continue into the quarter
plane x4 < 0 and v > 0, while the real branches sprouting from the ‘even’ parabolas
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merge with the real branch coming from the ‘odd’ parabolae in the direction of
increasing u (or decreasing ). The overall features of the dependence of the spectrum
on the parameters are then similar to the cases of &« =12, x4 varying, or y =4, «
varying, as delineated above, the only difference being the position (and the number)
of the points in the parametric 4 —a space corresponding to eigenvalues equal to
Zero.

5. Nonlinear stability

In the preceding Section, the linear instability for the forced solitary waves in the
range 4 < 9, @ > 6 was established for forcing (i) and (ii) respectively, but we were
unable to ascertain any eigenvalues for > 9 or a < 6, and so the question of
stability of the forced solitary waves in the latter range of parameters is still to be
resolved. A principal difficulty which is characteristic of the present problem lies in
the rather unique feature of the linearized stability equation that an eigenvalue o
with a negative real part cannot be used to indicate a decay of small perturbations
f(x) because —o is then the eigenvalue for the perturbation f(—x). However, a
sufficiency condition for nonlinear stability can actually be shown.

We first notice that the fKdV equation (2.1) can be interpreted, as is well known
for its homogeneous counterpart, as a hamiltonian system. Introducing the
hamiltonian functional (see (C 13) in Appendix C)

1 + 00
HO = f [+ 2 =38~ 6P¢] da, (5.1)
and the Poisson bracket
_ (T8 0 0%
where ¥ is any functional of  and §/8¢ denotes the functional derivative, we find that
08K
L= =55 (5.3)

as can be readily verified by direct computation. The hamiltonian (5.1) is one of the
two ‘obvious’ conserved quantities for the fKdV equation with the forcings under
consideration, the other being the total excess mass (the equation itself being a
conservation law),

+ 00
M = J {dx = const. (5.4)

These are obvious in the sense that they are the ones obtained by Noether’s first
theorem, due to the invariance of the lagrangian for equation (2.1) with respect to
time translations and addition of an arbitrary constant to the potential for the
dependent variable (see Appendix C). The presence of a non-constant forcing term
has the effect of destroying the invariance with respect to spatial translations, and
$0 the excess energy integral,

1

+ 00
s=5| ¢dn, (5.5)

—00
is in general not a constant of motion.
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Equation (5.3) shows that the stationary solutions {(x) of (2.1) can now be seen
as extrema of the hamiltonian (5.1), i.e. they are solutions of

SH /8¢ = 0. (5.6)

The second variation of the hamiltonian as ¢, is determined as

+00
3*H = %J (75 —9&(x) 9* + pn*] de, (5.7)

where 5(x,t) = {(x,t) — {(x) as before, and is assumed to be square integrable as well
as its first derivative, i.e. it is an element of the Sobolev space H*. Taking the time
t fixed for the moment, this equation can be rewritten, in terms of the inner product
(4.9) in L2, for the usual Hilbert space of square integrable functions, as

82 A = 3l (0, Ko m)+p(n, )], (5.8)
where K is the Schridinger operator introduced in (4.14), i.e.
K, =—d%/da?—9¢,(x) = —d?/da® —a sech? (x). (5.9)
From elementary quantum mechanics, it is well known that
(1, K1) 2 Ao, m), (5.10)

where A, = A (a) is the infimum of the spectrum of the operator K ,, which coincides
with the (negative) eigenvalue of K, corresponding to the ground state, if the
sech? (x)-potential in it is able to support one. In our case A,(12) = —9 for forcing (i),
while the minimum value of « for having a bound state is a =6 for forcing
(i), corresponding to A,(6) = —4. Thus

282 = [p+ A @)l (lnli* = (n,7)),
= (n—9)|y|* for forcing (i), (5.11)
= [4+A,()]llg|®  for forcing (ii), (5.12)

and hence for u > 9 or a < 6, for forcing (i) or (ii) respectively, the second variation
82 is strictly positive, a result commonly referred to as formal stability, which is
a sufficient condition for excluding linear instability (Holm ef al. 1985). Formal
stability is a step towards establishing nonlinear stability and, owing critically to the
presence of the parameters u and «, it is indeed possible to show that these forced
solitary waves are (nonlinearly) stable in the range of parameters under con-
sideration. Nonlinear stability is here intended in the usual Lyapunov sense, i.e. it
is possible to find a norm d(-,) in the appropriate functional space on which the
evolution equation (2.1) is defined, so that for any ¢ > 0 one can determine a § > 0
such that if d(¢, ) < datt =0, then d(¢, {) < eat any time ¢ > 0. Although a second
non-trivial conserved quantity appears to be missing for the forced case, the original
argument of Benjamin (1972) can be adapted to this case, and convexity estimates
can be provided for the hamiltonian functional itself.

The fact that the excess energy of (2.1), &, is no longer conserved actually
simplifies the analysis, since this is a consequence of the absence of spatial translation
invariance, which eliminates the need to consider quotient spaces with respect to the
translations. Specifically, the total variation A of the functional # at { is

+ 00

1t 3
A%:EL [ni—9§s(x)772+,u172]dx——ij 73 da, (5.13)

—0o0
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and the last term can be estimated by using the Sobolev inequality

3 00 + 00
§f nide < %Inlwf 7 dw (5.14)
<zZz il llnl®, (5.15)
where ||, is the supremum norm, || ||, is the Sobolev norm |3/} = ||3|*+ ||7,||* and

7 is assumed to be in the corresponding space for ¢ > 0. Using (5.15) it then follows
that

A = g+ A )l l2 =535 Il 2. (5.16)
If we take the norm d to be |-|;, and impose, at time ¢ = 0,
(-, 0), <9, (5.17)

it is easy to provide an upper bound on A, again using Sobolev inequality (5.15),
A < M|7ll3+553 Il 712,
<Ml +55= 13,
< y(8) say, (5.18)
where M = fmax (1/|u+A,(2)]). Because of the invariance of S with time, this

bound holds for all time ¢ > 0 for which #(x, t) exists in H*.
Following Bona (1975), introducing for brevity the notation

A@) = lnll, B@) = ln.ll. (5.19)

we can further provide a bound on B(t) for any time ¢ > 0 from the inequality (5.18),
isolating the 7, term in it,

B> <2y +35(A+B)A* +|u+ Ay ()42 (5.20)
Once this inequality is solved for B, we can estimate B in terms of 4,
B<F4), (5.21)
where .
F(A) = H3A2+[9A4% 4+ 8y +4(3A° + |+ A, ()| 4%) ). (5.22)
Since (5.16) implies
v =2 AKX = A [(p+A(2)—3/+/2(A4+B)], (5.23)
using (5.21) gives
¥ 2 BN (0t A (@) — 3/ 2F(A)] — 525 A%, (5.24)
Now, since F(0) = 4/(2v), hence if
sl Ao(@)] > V7, (5.25)

there must exist some positive interval I, = [0, 4, ] such that, if 4 belongs to 1., the
right hand side of (5.24) is positive, and monotonically increasing with 4, as can be
realized by studying it as a function of 4. Therefore, with y (and hence 8) being held
fixed and sufficiently small, and taking the corresponding 4, 4, say, we have a bound
on 4 in terms of y, 4 < 4, and in turn, using (5.21), we also have a bound on B in
terms of y only, B < B, for any ¢ > 0. Hence, by choosing d such that both (5.25) and

A4 BES A2y + By < € (5.26)
Phil. Trans. R. Soc. Lond. A (1991)
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hold, the Lyapunov condition is established with d = | ||;. We again see that the
condition expressed by (5.25) is crucial, and this of course is attained for x4 > 9 and
a < 6 for forcing (i) and (ii), respectively. It is interesting to notice that for a
stationary state which is negative definite, the spectrum of the operator in (5.9) is
purely continuous, 0 < A < 400, and such a solution would therefore be stable,
according to (5.25), for as long as u > 0, or the forcing moves at supercritical speed.
This proves the conjecture by Malomed (1988) for a negative solution corresponding
to a forcing P(z) given by a d-function. In §7, the stability character of negative-
definite solutions is demonstrated by carrying out numerical simulations on the full
fKdV equation (2.1).

Underlying the above considerations is the assumption that for sufficiently smooth
initial data {(x,0) (and forcing P in general) the solution {(z,t) exists, continuous in
time, and belongs to at least H* for all time ¢ > 0 (see Bona & Smith 1975).

It is interesting to notice that an almost identical argument can be provided for
the nonlinear stability of the stationary solutions to the regularized fKdV equation,
which is the one to be used in most of the numerical simulations of §7. In the
coordinate frame and notation of (2.1), this equation can be written as

§+HO6(F—1)8,—986,— & — FE, e = 6P(2). (5.27)
The analogue of (2.4) and (2.5), i.e. the stationary solutions { (kx), in this case are
(i) Coe(@) = 35°F sech?® (kx), (5.28)
P.(x) = $k*(F — 1 —2k*F) sech?® (kx),
— 2
(llr) gsr(x) = asech (k.%‘), 1

5.29
P.(x) = a(k®F —3a) sech?® (kx), F—1= §k2,J (5.29)

and the hamiltonian for this regularized fKdV equation only requires a change in the
coefficient of the derivative term in (5.1) (see Appendix C),

= %fw [FC+6(F —1)*— 98— 6P(x)¢] dx. (5.30)

Thus, introducing the notation
¥ =kx, p,=6F—-1)/kF, o, =9a/k*F, (6.31)

in analogy with (3.5) and (3.6) we can write the total variation of the hamiltonian
based on . (x) as

1 _1 o ‘M2 2 / 2 2 / 3 e 3 ’
lc_F_A%r—_éJ (92 —a,sech? (') 9® + uy?] do VG p3da’, (5.32)

— —©

and from here on the previous arguments apply virtually unchanged, with the
exception of the coefficient in front of the cubic term in (5.13).

6. Existence of multiple stationary solutions

The spectrum of the operator K, in (4.14) is once again useful for determining
bifurcation points of the solutions (2.4) and (2.5) to other stationary solutions. More
specifically, we consider the time-independent counterpart of equation (3.4) in a
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neighbourhood of the parameter values x4 = u,, (or « = a,), which after integration
in z under condition (4.6), can be written as

— g — oy sech?® (x) + uy — 3y = 0. (6.1)

We note that (6.1) has a solution of the form 7, = bsech® () if x = 4 and b = 2(6 —«),
so that for forcing (i), # = 4 (« = 12), we have b = —3, making the resultant motion
trivial (i.e. { = {,+ 9, = 0) with P = 0, whereas for forcing (ii), b = 0, P = 0, giving a
free soliton for the resultant {. We proceed below to determine non-trivial solutions
of (6.1) for other values of 4 and «a.

For definiteness, let us first restrict ourselves to forcing (i), with & = 12 so that the
subscript o of K, may be omitted without causing ambiguity, and define x4 as in
(4.18), i.e.

p=p,+se, 0<e<l, s=+41, m=1,23. (6.2)

We seek for solutions of (6.1) by regular perturbation expansion of the form

n(@;p) = Yri(€) () + Pale) ny(x) +Yrale) na(a) + ... (6.3)

where the {1;} are taken as in (A 2) and (A 3), i.e. ¥/;(¢) = ¢’ for u = 1, 9 and () =
€/’?, for u = 4. Substituting these expressions in (6.1) we have for m = 1,3

n—1

(K+/"m)771 = O’ (K+/'l'm)77n = Snn—l +§ E 77n—lc 7710 (n > 1): (64)
k=1
and for m = 2,
(K+4)n, =0, (K+4)n,=n, (6.5)
n—1
k=1

where K is the Schrodinger operator defined in (4.14). Thus, for the case m = 2,
Um =4, we find that for the first order (in the notation of (4.15)-(4.17)),

7,(x) = ¢, fo(x;4) = 2¢, tanh (x) sech? (x). (6.7)

In analogy with (A 5), the inhomogeneous equation for 7, in (6.5) is solvable, due to
the symmetries of the functions involved, and the particular solution for », can be
determined as

Na(®) = —3c2sech? (x) [3sech?® (x) — 2 tanh (x) —2]. (6.8)

The constant ¢, is determined by the solvability condition at the next order, n = 3,

S 2__(f2 _
5”]00“ (f5:m2) =0,

to give ¢ =3/ (—11s), (6.9)

the square root arising from the proportionality #, oc ¢i. Therefore, in order to have
7, real we must take s = —1, i.e. the bifurcating solutions exists only for ¢ < 4, and
these small amplitude deviations from the exact solution { of (2.4) for # < 4 have the
form, to the first order,

{(x) = Ssech? (¥) +2(11€)isech? (x) tanh (z) + O(e) at pu=4—e. (6.10)
Phil. Trans. R. Soc. Lond. A (1991)
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Figure 5. Bifurcation diagram pertaining to the stationary solution {, and the second stationary
solution &, for forcing (i), as obtained by numerically solving (6.14). Plotted here is the amplitude
o of {(x) and of {(x) against u, the dashed line referring to instability, the solid to stability.

By similar calculations, the solutions bifurcating at the other two eigenvalues
(corresponding to u =1 and u = 9) of the operator K are

L) = Esech? (x)+ sec, (1) fol@; ) +O(€?), m=1,3, (6.11)
2
where C1(ftm) = gff%(x;ﬂm)dx/JfS(x;/Am)dx, (6.12)
with the integrals ranging from — oo to + co. Thus, the amplitude constant ¢, (u,,) is
211 212

Furthermore, in seeking possible continuations of the new branch of solutions
(6.11) to 4 = 4, we note that the forcing function P in (2.4) becomes of order ¢ for
u=4+se, as the stationary version of (2.1) shows upon using the similarity
transformation (3.3),

— &+ 48— + se[{—2sech®(x)] = 0. (6.14)

Thus we adopt a perturbation expansion of the solution about { = 0, u = 4, to seek
a branch of solutions {(x;€) bifurcating from the zero solution at x = 4, of the form

L(x;€) = el (x)+ €2E,(x) + ... (6.15)
We find, for the first order,
Ciow— 48, +3ssech? () = 0, (6.16)
+ 00
and so Lx;e) = %SGJ e 2=t gech? (£) dE+ O(e?). (6.17)

On the other hand, by numerical integration of (6.14) regarding { as even, i.e.
£,(0) =0 and ¢ as arbitrary, using a fourth-order Runge-Kutta integrator and bi-
section method for matching the zero boundary condition at large «, it is possible to
see that this new branch of solutions, which will be denoted by {, joins the one
originated at 4 = 9 with wave amplitude @ = § (see (6.11)); the result is given in figure
5, where the amplitude o/ of { and {; are plotted against the parameter u.

The stability character of the new stationary solution ¢ found by the above
regular perturbation methods and the full bifurcation curve of { away from the
special parameter values {u,,} are issues that need to be addressed. According to the

Phil. Trans. R. Soc. Lond. A (1991)
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nonlinear stability analysis of §5, the first question can be answered once the ground-
state eigenvalue of the operator K with ‘potential” { (x) given by one of these
stationary solutions has been evaluated. Once again, in a neighbourhood of x,,, this
is possible by using perturbation techniques. For instance, for the case m = 3 we have

K, = d?/dx*— 12 sech? (x) — se[9¢, (u,) sech® ()], (6.18)

and by an elementary perturbation calculation the corresponding ground state
eigenvalue is,

Ao(12:6) = Ao(12) = se[9¢, [f3(; ) da/ [f3(2; 1) da] + O(€?) = — 9= 2s6 + O(e?).
(6.19)
Thus, for s =—1, i.e. u = 9—¢, we have

H+2A,(12;€) =€ > 0, (6.20)

and so the positive lower bound estimate for the corresponding A is established.
Under the forcing (i), the bifurcation of stationary solutions to (2.1) taking place at
1 =9 is therefore of the transcritical type, and a stability exchange occurs at 4 = 9,
o =E(0) =3

7. Numerical simulations

The salient features of the forced solitary wave solutions delineated in the
preceding discussion can constitute an ideal trial ground for validating any
numerical code developed for solving the fKdV (2.1). In fact, if the initial condition
{(x,0) = {(x), equal to one of the two stationary types of forcing (i) and (ii) is chosen,
an accurate code should be able to show evidence of such stability features as
determined analytically in the foregoing. Since the numerical results are by nature
approximations, with errors usually estimable, we would expect that for the cases
where the exact solution is found to be unstable, there should arise, in due time, in
the corresponding numerical results a spontaneous onset of the instability, which can
be attributed solely to the ever-present numerical errors, with no need to superimpose
a perturbation to the exact solution. By decreasing the truncation error of the
numerical code, for instance by adopting a finer grid, the manifestation of any
instability should accordingly be somewhat delayed in time. Conversely, by
perturbing the initial condition to provide a departure from a stable stationary wave,
the numerical results should show evidence of the tendency of the system to recover
the stationary state if it is stable, and if the perturbation is not too large. Thus, the
computer simulations can be helpful in describing how the system evolves out of an
unstable state, a question that the stability analysis of the previous sections is
insufficient to address.

We shall focus our numerical simulations for forcing (i) on the three intervals of the
speed-parameter u (see (3.5)), as identified by the previous analysis, namely x < 4,
4<pn<9 and p =9, which are called the periodical bifurcating (transcritical)
régime, aperiodical bifurcating régime, and stable supercritical régime, respectively.
We further notice that for 4 <4 the amplitude of the forcing given by (2.4) is
negative. For forcing (ii), since it provides an analytic expression for solitary waves
of negative amplitude, we have concentrated our numerical study on values of
o < 0 for the reason given in §5.

One of the codes employed here is based on the one developed by Wu & Wu (1982)
which uses the modified Euler’s predictor—corrector algorithm in advancing time,

Phil. Trans. R. Soc. Lond. A (1991)
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Stability of forced steady solitary waves 449

with the space derivatives approximated by central differences. The forward time-
difference computation for {(z,t) is implicit, to achieve the desired numerical
stability and accuracy with a relatively large time step (up to 0.2 in dimensionless
form), and no iteration is required on the corrector stage. Furthermore, the open
boundary conditions have been adopted at the space boundaries of the computation
domain that require the waves adjacent to each boundary to leave the computation
domain at the rate of the linear wave velocity ¢, = 4/(gh). To avoid propagation of
short wavelength disturbances that can be generated by numerical errors, equation
(5.27), the so called ‘regularized’ fKdV, has been adopted rather then the fKdV
equation itself, the two models being equivalent in the limit of applicability, i.e. for
long waves (small k, see (2.6)), and small amplitude. The differences between the
results obtained from the two models is expected to be of O(k?) (Benjamin et al. 1972;
Whitham 1974; Wu 1987) and, as already mentioned, the previous stability analysis
applies to this equation as well, with only minor modifications. We notice that
according to the similarity transformation (3.3), the choice of taking k£ small has to
be counterbalanced by the drawback that a smaller k£ implies a larger number of time
steps (in physical time). In all the cases in which this code was used, the parameter
k is kept fixed at a compromised value of 0.3.
Throughout the simulations the wave resistance coefficient Cy(t), defined as

+00
—00

has been evaluated; this quantity has been found very useful to better emphasize

some major features such as the presence of small-amplitude oscillations, their time

period, etc. which otherwise would become difficult to detect. Physically, Cy(f) has

its significance in providing a non-dimensional measure of the power being supplied

by the forcing, as shown by the energy balance equation,

1 d +0o0 +00

-—J G, t)de = —f P(x) &, (x, t) da, (7.2)
2dt ) _, —w

which is obtained by integrating the product of (2.1) with ¢ over «.

To fully appreciate the previous remarks, we also have developed a simple finite
difference code to numerically solve the fKdV equation. It is based on the explicit
leap-frog scheme introduced by Zabusky & Kruskal (1965), with three-point average
on the nonlinear term to comply with the energy balance equation (7.2). Being
explicit, the code is much less efficient than that specified above for the regularized
fKdV model, and for numerical stability the typical time step At for k£ = 0.5 has to
be #; the spatial step Az, as compared with the typical case of Ax = 0.1, At = 1Az for
the first code. Therefore, application of the latter code has been limited to cases when
spot comparisons with the results of the regularized fKdV equation were desired. All
the plots shown here are referred to the ‘body frame’ in which the forcing is
stationary, i.e. the water is entering the computational domain from the left side
with non-dimensional velocity F'.

a) The periodical bifurcating (transcritical) régime
P , g g

The results for forcing (i) within the range 4 < 4 can be summarized as follows.
(@) The phenomenon of periodic generation of the so called ‘runaway’ solitons as
reported by Wu & Wu (1982) is invariably observed for x4 < 2, with the zero initial

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 6 Figure 7
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Figure 6. (a) The phenomenon of generation of upstream-running waves for forcing (i) at x =0
(F = 1), with the zero initial condition {(z,0) =0 (y(z,0) = —{(x)), simulated with k¥ = 0.3, and
computed with Az = 0.1, At = 0.05, using the implicit code. (b) The corresponding wave resistance
coefficient against time. Its nondimensional period of oscillation 7, = 7, k* is ca. 7.9 and coincides
with the period of birth of upstream-running waves.

Figure 7. (@) The phenomenon of generation of upstream running waves for forcing (i), at u = 2
(F = 1.03, k = 0.3), with the zero initial condition {(x,0) = 0(»(z,0) = — & (x)), and computed with
Ax = 0.1, At =0.05, using the implicit code. (b) The corresponding wave resistance coefficient
against time. Its non-dimensional period of oscillation 77 is &~ 18.1 and coincides with the period
of birth of upstream-running waves.

condition, i.e. the rest state {(x,0) = 0. The period of generation is found to increase
monotonically as u is increased until 4 ~ 2.5 where it becomes impossible to get more
than one soliton generated unless the (non-dimensional) time interval of computation
would be extended considerably beyond 1600, which was kept as a reasonable upper
limit. This can be seen in figures 6 and 7 for 4 = 0 and 4 = 2 respectively, in which the
periodic nature of soliton generation is conspicuously locked in with the evolution of
the wave resistance coefficient O (t). For the case u = 0, the non-dimensional period
T, = T, k* (differing from ¢’ in (3.3) by a factor of 1) of the wave resistance coefficient
Cy is Ty, ~ 7.9, which coincides with the period of generation of runaway solitons
and also agrees with the value determined by Wu (1987) numerically as well as by
applying a mass—energy theorem.

As p is increased to u = 2, a typical case simulated in figure 7 with the zero initial
condition {(x,0) = 0, gives for Cg(¢) the period 7T, = 18.1, which also coincides with
the corresponding period of birth of the upstream-advancing solitary waves. For still
greater values of 4 in 2 < u < 4, determination of 7, by numerical means becomes too
elaborate to be practical due to the ever increasing period of generation of solitons.
However, in this range of 2 < u <4, the second stationary solution, ¢, which
according to the nonlinear analysis is stable for x <9, seems to become
asymptotically the terminal state in the evolution of the fluid system when a
sufficient departure from { is initially afforded. This behaviour is expected to prevail
readily in a neighbourhood of u =3 since there the (positive) real part of the
eigenvalue, o, reaches a maximum (see figure 1b), giving the fastest growth to small
disturbances. This is illustrated in figure 8 for 4 = 3, with the waves evolving under
forcing (i) from the initial rest state of { = 0; the free surface is seen to soon relax to

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 8 Figure 9
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Figure 8. (a) Generation of the second (stable) stationary wave { for forcing (i), at p =3
(F = 1.045, k = 0.3), with the zero initial condition ¢(z,0) = 0(y(x,0) = —{(z)), and computed
with Ax = 0.1, 4t = 0.05, using the implicit code. (b) The corresponding wave-resistance coefficient
against time.

Figure 9. (a) The evolution of the stationary solution ¢ (x) for forcing (i) at u = 0 (F = 1) showing
the incipient emission of upstream-advancing solitary waves delayed with the initial condition
{(x,0) = 0.4¢ (x) as compared with the case shown in figure 6 for the rest initial state, the other
parameters being the same. (b) The regular oscillation of the wave-resistance coefficient Cy(¢), with
period 7% = 6.5, is unaffected by the emission of solitary waves.

the stable { state about the centre of forcing, after having radiated some initial
disturbances downstream. This asymptotic state of { is reaffirmed by the
corresponding Cg(¢), which as shown in figure 8b has an initial positive hump
signifying energy absorption from the forcing, and then settles to zero for the
remaining three-quarters of the time range computed. This trend seems to continue
for 3 < u < 4, (but not too close to 4 = 4 at which o, = 0), especially if the rest state
is chosen as the initial condition. This is physically clear since the amplitude of {
tends to zero as u-—>4 (see (6.15)), hence the rest state becomes merely a small
perturbation.

(b) In the periodical bifurcating régime where the periodic upstream emission of
solitary waves can occur, the nonlinear effects have a significant influence on the
incipient emission time, T,; the smaller the initial departure from the stationary
response ¢, the longer the local fluctuation (incubation) will last before the first
solitary wave becomes mature and emitted. After this incipient emission, the regular
sequential emissions will then ensue. These salient features of the process are first
illustrated in figure 9 for 4 = 0 (F = 1) with initial condition {(z,0) = 0.4{ (), (& =
0.4£,(0)). In this case, the first emission is timed at about ¢ = 7, = 800 (T%, = T, k%),
near the fourth peak of Cy(f), while Cy(t) oscillates regularly, apparently unaffected
by the emission, with period 7 = 6.5, whereas the period of emission of solitons is
T, = 14.6.

(c) If the initial condition is zero perturbation (y(z,0)=0, or {(z,0) = { (),
o/ =) for p slightly less than 4, the very slow rate of growth prevailing here for {and
the minute departures of ¢ from ¢ (attributable only to numerical errors) makes
numerical efforts prohibitive to reach the transient and terminal flow states.
Nevertheless, the variations in the wave-resistance coefficient, Uy, are found to

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 11

Figure 10 04 (a)
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Figure 10. (a) The evolution of the stationary solution ¢ () for forcing (i) at 4 = 0 (F = 1), with the
steady-state initial condition {(x,0) = ¢ (x), computed with k = 0.3, Az = 0.1, At = 0.05, using the
implicit code. The result, with perturbation attributable solely to numerical errors, shows no
emissions of solitary waves up to ¢ = 800. (b) The corresponding wave resistance coefficient against
time. The non-dimensional period of oscillation 7" & 5.75.

Figure 11. (a) The evolution of the stationary solution ¢ (x) for forcing (i) at u =3 (F = 1.045,
k = 0.3), with the initial condition {(z,0) = 1.5{(x), computed with & = 0.3, Az = 0.1, At = 0.05,
using the implicit code, with the result showing upstream emissions of two solitary waves and the
subsequent bifurcation to the stable solution ¢ (x). (b) The corresponding wave-resistance
coefficient against time.

correlate very closely with the corresponding eigenvalue o = o, (u)+io,;(4). For
example, at u = 0, figure 10a shows that the resulting wave has varied from {(x)
merely by 2% in amplitude by the time ¢ = 800, which is in accord with the estimate
based on ¢,(0) = 6.84 x 107*. With the time scaled by (3.3), it would require a time
of order O(10%) at k = 0.3 to show an appreciable effect of O(1). However, the wave
resistance coefficient in figure 105 exhibits a regular oscillation of period

T. =T~ 575, (7.3)
though with a very small amplitude (ca. 5 x 107%).

(d) The nonlinear effects on the period Cy(¢) oscillations, 7}, compared with that
on the soliton emission period, 7}, and that on the incipient emission time, 7}, are
relatively weak. It has been found that the period 7} is invariably somewhat reduced
with decreasing strength of emission as measured by the net variation in the wave-
resistance coefficient, ACy = Oy 0y —Crumin (Which is correlated with the amplitude
of the waves emitted). For the case of u =0, we have T, ="17.9, 6.5, 5.75 against
(ACg)x 10* = 53, 37, 0.55, respectively, as shown in figures 6, 9, and 10. It is of
interest to note that in the small limit of ACy, the period of Oy variation becomes in
good agreement with the period predicted by the imaginary part of the eigenvalue
(Wey = Im (J0) = 1.144 at u = 0, see figure 1b)

T, = 2n/w,, = 5.494. (7.4)

This result can be further improved by using a smaller &, or by using the original
fKdV model (to replace the rfKdV equation used here), as shown by Camassa (1990).

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 12. (a) The evolution of the stationary solution { (z) for forcing (i) at u =3 (F = 1.045,
k= 0.3), with the steady-state initial condition {(x,0) = ¢ (x), the numerical procedure being the
same as before. (b) The corresponding wave-resistance coefficient Cy(¢) oscillates with period
T ~ 15.79 and with its amplitude growing with the factor exp(yt’), y = 0.125.

Another region of interest in the periodical bifurcating régime is a subdomain
centred at x = 3, near which o, has a maximum, albeit still quite small in value.
With the initial condition {(z,0) = 1.5¢,(x) imposed at 4 = 3, which is a fairly strong
disturbance, figure 11 bears out the upstream emission of two solitary waves, the first
being emitted in initial recoil to the forcing which is absorbing energy as indicated
by Cy varying over a negative hump. Long after the first emission, the second
solitary wave is emitted at about ¢t = 1000, leaving the fluid system soon stably settled
at the ¢ state, with Cy then falling off to zero.

Again at x4 = 3, but now with the zero-perturbation initial condition (5(x,0) = 0,
or {(z,0) = {(x)), the initial wave is shown in figure 12 to remain virtually unchanged
up to t = 1600, with its numerical values exhibiting a ‘breathing’, or very slight
oscillations with variations by less than 5% in amplitude over the duration
computed. The corresponding Cg(¢) curve shows a growth in amplitude at a rate in
accord with the real part o, of the eigenvalue, and its period of oscillation, evaluated
numerically at

T, = k*T,

num

~ 15.79, (7.5)

compares well with that given by the imaginary part of the eigenvalue, w,, =
$0; = 0.4 so that
T, =2n/w,, = 15.70. (7.6)

Unfortunately, even with the local maximum rate of growth of the instability at
4 =3, the computation time required to attain the asymptotic flow state is still
prohibitive, with the present efficiency of our codes. The non-dimensional time for
having disturbances of order O(1) would in fact be, at = 3, of the order of O(5 x 10%).

(b) The aperiodical bifurcating régime
For u in the range 4 < # < 9, the initial state of rest is found to gradually evolve
under the forcing (i) into the stable { wave, after radiating a train of waves
downstream. A typical case is shown in figure 13, for 4 = 6.6 corresponding to F' =
1.1 at k£ = 0.3. The asymptotic state of { reached by the system is reaffirmed by the
graph of Oy, figure 13b, indicating that no energy is being released by the forcing

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 13 Figure 14
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Figure 13. (@) The evolution of the stationary solution ¢ (x) for forcing (i) at = 6.6 (F = 1.1,
k = 0.3) with the zero initial condition {(x,0) = 0, with the same numerical procedure as before,
showing the bifurcation through transitional modes to the stable stationary wave ¢ () after
radiating downstream a train of dispersive waves. (b) The corresponding wave-resistance coefficient
Cx(t) exhibits no periodic behaviour, its small negative asymptote being of a numerical origin.

Figure 14. (a) A variation of the case shown in figure 13, here with the initial condition {(x,0) =
L1g () at u=6.6 (F = 1.1, k=0.3), the other parameters being the same. With this slightly
stronger initial perturbation, the result shows the bifurcation of { (x) through transitional modes
to the stable state ¢ (x) after the upstream emission of a single solitary wave. (b) The corresponding
wave-resistance coefficient increases to a peak and then falls off to zero.

after the initial transient. (The negative, but small, asymptotic value reached by Cy
is seen to be of a numerical origin, since it is halved as the spatial grid is halved, and
is partly due to the finite difference scheme for the regularized fKdV model being not
exactly in accord with its equivalent for the original fKdV, see Appendix C.)

This general feature of solution in the aperiodical bifurcating régime of 4 < u < 9 is
in sharp contrast with that in the range u < 2, see figure 6 for the case u = 0 and
figure 7 for 4 = 2 where the periodic upstream emission of solitary waves manifests
and the Cy exhibits a periodic behaviour in time, a trend which continues to yu = 3
as reported above. This new stationary state is the stable steady wave { of (2.1), as
can be verified by comparing its terminal value of amplitude ca. 0.66&,(0) (figure 13)
with that of the { solution at 4 = 6.6, which is ca. 0.64&,(0), on the bifurcation curve
(figure 5) that bifurcates from u = 9. The instability of {, associated with the real
eigenvalue o = 0.23 at x = 6.6 (figure 1) manifests itself during the non-dimensional
time to ¢t = 600, which is about the time limit chosen for the computation and at
which time the resulting wave emerges to be about fully developed.

To further pursue this point concerning the nonlinear effects, we choose to magnify
the perturbation by increasing the initial wave amplitude by 10% rather than
extending the time limit, and the result for x4 = 6.6, {(x,0) = 1.1{,(x) is shown in
figure 14. There are two remarkable features in the result: (i) the perturbed
stationary wave first exhibits instability through emitting a single upstream-
advancing solitary wave, and (ii) the remaining wave in a broadening region centred
at the origin of forcing decays to the stable, stationary { wave after emitting the
upstream wave and some downstream radiation, the latter being dispersive waves
moving with a subcritical speed to the right. Radiation of these waves renders C to
rise in a hump before falling off to zero, signifying that the fluid system absorbs
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Figure 15 Figure 16
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Figure 15. (¢) Another variation of the case shown in figure 13, now with the initial condition
Yx,0) =0.9¢ (x) at u = 6.6 (F = 1.1, k = 0.3). With this slightly weaker initial perturbation, the
result shows a smooth transition from ¢ (x) to the stable state {(x) with only some weak radiations
downstream. (b) The corresponding wave-resistance coefficient indicates a slight release of energy.
Figure 16. (a) The generation of the stationary solution {(x) by forcing (i), at u = 18 (F = 1.271,
k = 0.3), with the zero initial condition {(z,0) = 0, computed with Az = 0.2, At = 0.1, using the
implicit code. The system goes to the stationary solution {(x) after a train of dispersive waves
downstream. (b) The corresponding wave resistance coefficient against time. The system absorbs
energy initially in generating the stationary wave.

energy from the forcing. On the other hand, we found that a slight decrease rather
than an increase in the initial wave amplitude, implying a weaker perturbation,
makes the local solitary wave decay more smoothly to the stable state { while
emitting only slight radiation, as can be seen in figure 15 for u = 6.6, {(»,0) =
0.9¢,(z), during which process a small amount of energy is released from the fluid
system, as Cy(¢) remains negative before going to zero.

(c) The stable supercritical régime

In the stable supercritical régime of g > 9, our numerical results show evidence of
their strong stability in that, even when so greatly perturbed as from the initial rest
state of ¢, with g(x,0) = — (), the forced steady solitary wave { is invariably
recovered after emitting some radiation downstream. The result pertaining to the
case of u = 18 are graphically represented in figure 16, this result is typical of the
wave evolution in this régime, persistently tending to {; as the asymptotic.

With respect to the case of forcing (ii), we recall that for a specified forcing
strength, there exist two branches of stationary waves { (x), one with a (similarity)
amplitude « > 6, the branch which has been shown to be unstable on linear theory
(see §4b), and the other with an amplitude a < 6. According to the previous analysis,
with {(z) taken as a potential for the Schrédinger operator K,, the lower branch &
with a < 6 cannot support any bound state, the spectrum being continuous and
positive. It therefore follows that as a forced solitary wave this branch of { is stable
and this can indeed be confirmed by numerical simulations. It is in this sense that we
may regard this lower branch of { () as being in analogy with the steady wave {()
in stable response to forcing (i). With the stationary solution { produced by forcing
(ii) so clarified, the main features of the stability of this {; by numerical simulations
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over the stable régime o < 6, the aperiodical bifurcating regime 6 < « < 12, and the
periodical bifurcating régime o > 12 are found in close analogy with the results that
have been presented in detail for forcing (i) and will therefore be curtailed here (but
see Camassa (1990) and Camassa & Wu (1991) for further details).

8. Conclusions

In summary, we have investigated the stability of stationary solutions, ,, of the
fKdV equation for two basic types of forcing in the class given by Wu (1987). Results
obtained from the linear stability analysis play a leading role in identifying three
quite distinctive transcritical régimes. The first is the aperiodical bifurcating régime
characterized by a pair of purely real eigenvalues, o = + o, which exist for4 < u <9
in case of forcing (i) and for 6 < a < 12 in case (ii) for which small departures from
the stationary-response state grow exponentially. After the transient growth the
original waves invariably are attracted to a new stationary wave ¢, which is stable
and is reached after some downstream radiation of dispersive waves, with or without
an upstream emission of a single solitary wave to shed excessive mass and energy.
The form of radiation in transition depends on the parameter .7 which is a measure
of departure of arbitrarily chosen initial wave from the stationary state of {,. (This
measure is of course one of the myriad of means of introducing disturbances to the
stationary wave { being examined, but is chosen for the convenience of
computation.) Further, the evolution of the fluid system in this régime does not
exhibit any time periodic phenomenon as expected in view of the eigenvalues being
purely real, and indeed as the numerical simulations show.

The second régime, the periodical bifurcating régime, existing with u <4 for
forcing (i) or with > 12 for forcing (ii), is characterized by having a double-pair of
complex eigenvalues, o(u) = + 0, +ioy, each pair ensuing from a fixed point of the
fKdV equation, at 4 = 4, and a neighbourhood of # = 0 and continuing indefinitely
with decreasing u (figure 1), with the real part o, being two to five orders smaller in
magnitude than the imaginary part o;. For motions in this régime, small departures
from the steady response ¢, will generally oscillate with a slowly growing amplitude.
Such oscillatory growths usually give rise to periodic upstream emission of solitary
waves, but may under certain circumstances undergo directly an evolution to the
stable state of {, such as by excessive disturbances or if x is very close to 4 = 4, near
which the modulus of the eigenvalue o is very small and vanishes at u = 4. For
forcing (ii), the solution ¢ exhibits similar behaviour in the analogous régime of
6<a<12.

The third régime, or the stable supercritical régime, existing with x > 9 for (i) or
with a < 6 for (ii), is characterized by having no eigenvalues that can be found on
linear theory. Nevertheless, the forced stationary waves in this régime are shown on
a nonlinear theory to be stable in the Lyapunov sense. The numerical simulations
demonstrate that the bounds estimates of the hamiltonian functional put forth in the
proof for representing the system in this régime are too strict, at least with respect
to the type of perturbation used (which are obtained by simply varying .</).

From the present study we may take note of the richness of new physical and
mathematical contents of the general subject of nonlinear, dispersive systems
sustaining forcings at resonance. The instability of the primary wave within the
periodical bifurcating régime and with finite amplitude of the forcing disturbances
offers a well defined route for the evolution to the régime of sequential births of
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upstream-radiating solitary waves in response to the steady transcritical forcings (i)
or (ii). For the velocity parameter above a certain threshold (x > 9 for forcing (i)) and
for the amplitude parameter below a certain margin (x < 6 for forcing (ii)), the
phenomenon of periodic generation of solitary waves ceases to manifest because the
forcing is moving too fast to be out raced by any free wave in case (i) (with an
amplitude within the limits of applicability of the fKdV model), or because the
forcing and the resulting waves are too weak to bring the nonlinearity to effect, as
in case (i) for 3 < u < 4 or as in case (ii) for & < 6. No special attention is given here
separately to the subcritical forcings since the upstream radiation becomes relatively
weak in this régime, though the phenomenon can persist to velocities as low as the
Froude number ¥ = 0.2 (Lee 1985; Lee et al. 1989).

In the mathematical context, the theory of eigenvalue problems seems to be still
not well developed for ordinary differential equations of the third order as we have
encountered in the present case. The different physical features exhibited of the
phenomenon in different régimes of the parametric space are found to correlate
closely with the eigenvalues being either non-existing, or purely real, or being
complex conjugates. For the last case, we found that numerical methods of high
accuracy are indispensable. In fact, the previous attempts by Wu (1988), using the
galerkian modal expansion method up to four terms retaining the nonlinearity, and
by Camassa (1990) for the linearized problem with up to 400 terms and using various
basis functions, were unsuccessful to reach a definitive determination of the real
component of the eigenvalue because of its minuteness as compared with the
imaginary component. Such a broad disparity between the real and imaginary parts
of the eigenvalue seems to be a hallmark characteristic of this class of problems that
requires further investigation. From the theoretical standpoint, the variational
approach expounded by Whitham (1967, 1974) and by Lighthill (1967) may be
valuable for solving problems involving nonlinear dispersive waves governed by
equations too complicated for analytical or numerical treatment, such as those
considered here.

Finally, we note that the type of bifurcation of the solution from the specific
primary wave found here seems to be new in nature. The significance and possible
impact of the issues pointed out here deserves continued attention and investigation
which is underway.

We take pleasure in expressing our deep gratitude to Sir James Lighthill for extremely valuable
discussions, especially those concerning the case when the rate of growth of the unstable stationary
motions is weak. We are indebted to George Yates for useful discussions and for his invaluable
assistance in the numerical computations. This work was jointly sponsored by ONR Contract
N00014-82-K-0443, NSF Grant MSM-8706045 and their successors N00014-89-J1971 and
NSF 4 DMS-890 1440, the last being cosponsored by the Applied Mathematics, Computational
Mathematics and Fluid Dynamics/Hydraulics Programs. One of us (R.C.) also acknowledges
support by DOE Contract W-7045-ENG-36 and AFOSRISSA 900024. The numerical calculation
were performed on the CRAY X-MP/48 at San Diego Supercomputer Center and at the National
Center for supercomputing Applications (operated by the National Science Foundation).

Appendix A. Local spectral analysis

We report in this Appendix some of the details of the perturbation analysis for
finding the eigenvalues and eigenfunctions in the forcing case (i), when g is close to
the special values {u,,} where an eigenfunction corresponding to o = 0 can be found.
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458 R. Camassa and T. Yao-tsu Wu
Taking in (4.14) the substitution y = tanh () and u = m?, we have
d df mt
==L+ 12— =0 Al
dy[( y)dy]+[ 1—y2]f ’ (A

which has solutions in the form of the associated Legendre function, f(y) = P7(y).
Under boundary conditions that f vanishes at y = +1, we have eigensolutions only
for the discrete spectrum of m = 1, 2, 3, or 4 = m?* = 1, 4 and 9, so that the entire set
of eigenfunctions is given by (4.15)—(4.17).

We now take g in a neighbourhood of u,, defined with a small parameter ¢ as in
(4.18), and use the expansions (4.20) and (4.21). As we have already pointed out, the
perturbation problem is singular, so that the analysis has to be divided into an
‘inner’ and an ‘outer’ problem. The specific formulations and solutions of these
problems are provided by the following sections.

(@) The inner problem for the case of m = 2, p,, = m* =4
After some exploration, we take for the ‘inner’ problem

o) =pe)=¢, u=109, (A2)
pile) =y(e) =€, u=4. (A3)
For u = 4+¢s, we have from (4.19)-(4.21) the first four order equations:

o(1) Ly fo =0, (A 4)
0(6%) Ly =0k (A5)
O(e) L fe = sdfy/da+ oy fy+ o, fi (A 6)
0((%) L fy=sdfy/dato,fy+o,fit o) (A7)
ete. with the boundary conditions

filwgy — 0, j=0,1,2,.... (A 8)

Z—>—00

The solvability condition for the above equations requires that their right-hand

sides be each orthogonal to g, = —sech? (z), the adjoint eigenfunction of f,, (which is
proportional to the integral (4.12) of f(—=, u,) given by (4.16)) namely,
(F,9,) =0 j=1,2,3,..., (A9)

where (F,g) denotes the inner product defined by (4.9), and F; stands for the right-
hand side members in (A 5)—(A 7). At order O(ez) the solvability condition (A 9) is
evidently satisfied, since by (4.12) the integrand is a total differential, and f; can be
determined by standard methods (such as by variation of parameters) as

Sfi(®) = 3o, sech? (x) [1 —x tanh (x)]. (A 10)

The complementary solution of (A 5), i.e. f;, need not be included in the expression
for f,, since it can always be absorbed in the leading term. At order O(¢) the
solvability condition determines o, as

oy =81 fol?/(ge:S1) = V/38/4/15. (A 11)

Here ||| is the norm induced by the inner product, |- [|? = (-,*), and the factor 1/s
in (A 11) arises from (g,,f,) being proportional to o,. Thus we see that o, is real for

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

a
/,// \\
/

A
( P 9

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

"/\\
A Y

A

i \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Stability of forced steady solitary waves 459

>4, (s = +1), but is purely imaginary for u < 4, i.e. s = —1. We further note that
f1 does not satisfy the integral constraint (4.8), and this is reflected at the next order
by the fact that for f, we can match the regularity condition at only one of the
boundaries at + 00, say at # = — co. This can be seen by integrating (A 6) once and
taking the limit as -+ o0,

fol®) —> —joy f1 x)dx = —g073. (A 12)

x>+

The solvability condition for the O(e?) problem determines the value of o, as

0y = —01(90:f2)/ Go: f1)- (A 13)

To evaluate the numerator we do not need the explicit form of f, if we make use of
the adjoint relationships, and the result is

oy = —sik. (A 14)

The eigenvalue thus has in a neighbourhood of 4 = 4, 4 = 4+ se, the inner solution
(4.22). As shown below, this inner expansion of ¢ and f can be matched well with the
outer expansion so that the compound eigenfunction satisfies the regularity condition
at x = + o0.

(b) The outer problem for the case of u =4

Since the expansion of f cannot satisfy the boundary conditions (4.6) at all orders,
we look for an ‘outer’ problem by defining the multiscale outer variables as

at = w(e+0(eh), F=wxe, wtF) =flx), (A 15)
so that d/dx = €20/t +60/0& + O(eh). (A 16)
We take w(xt, &) = ew,(at, &) + wy(xt, &)+ ..., (A 17)
and by substituting these expressions in (4.19), we obtain for the first two terms:
O(e?) —40w,/0x" = o, w,, (A 18)
O(e?) —40w,/0x" = o, wy+4 0w, /0T + 0y w,, (A 19)

where we have neglected the term sech? (6 #z*), since for * fixed it is exponentially
small as ¢—0. Eliminating the secularity in (A 19), the first term in the outer
expansion can be taken to be

wy(at, &) = Cexp (—jo, 2" —30, &), (A 20)

which satisfies the boundary condition w, 0 for ™ and & —>—co for both cases of
§ = + 1 by virtue of the expression (A 11) for o, (A 14) for o, and the relation # = el
The constant C is determined by matching with the inner solution. By observing
(A 12) and (4.6), we obtain a uniformly valid expansion up to order O(¢) (and up
to a multiplicative constant) in the form

[l 1) = folx) + ey () + elfy() — kot H(x) [exp (— o, e — 1oy ex) — 1]} + O(eb),
(A 21)

where H(z) is the Heaviside step function. The eigenvalue corresponding to this
eigenfunction is given by (4.22). The rate of growth of the perturbation (4.2) in the
form of 4 = f(x, u) exp (ot) with f given by (A 21) for u = 4, is seen quite different on
the two sides of u = 4, being of O(¢) for u < 4 and of O(e?) for u > 4.
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(¢) Inner and outer expansions for p = 1,9 and other cases

For the other two cases (4.15) and (4.17), the inner solution starts to violate the
integral condition (4.8) at order O(1) and the boundary conditions (4.6) at O(¢). The
appropriate solution of the adjoint problem by (4.12), is

go(x:/tm)=f Sol—=s5p,)ds, m=1,3, (A22)

and so it is in fact a distribution, being bounded but different from zero as x —+ co.
The analysis relative to these cases is completely analogous to the one for 4 = 4, and
we only quote the result of the uniform expansion for g = u,, + s¢, to order O(e):

s ) = folxs )+ €Ufy (@5 ) + (X 01/ 1) H(2) [1 —eXp(—(ffl/ﬂm)ex)]HO(i),
(A 23)

where y,, = [*, fo(x;u,,) dz. We note that this expression not only satisfies the
boundary conditions (4.6) to order O(e) but is also consistent with the integral
constraint (4.8) to the same order. The explicit form of f; is not important at this
order, only the limits for x >+ oo are, and from (4.19) it can be shown that, for
m=1,3

fi@sp) —> 0, ful@s p) —> =0 Xon/ ton - (A 24)

ZT—>—00 >+

We find for the first term in the eigenvalue expansion

o1(lm) = = 28/ X7) (fo.fo): (A 25)
which yields (4.23).

We notice that in (A 23) it is necessary to have o, > 0 to meet the boundary
condition at 4+ 0o and therefore by (A 25) we get eigenvalues of the form (4.23) for
U<, ie s=—1, only. Of course, this conclusion applies only to the branches
originating from =0 at u=1 or 9 and there may exist other branches of
eigenvalues issued from the other fixed point u = 4, as our numerical results indeed
show.

Concerning the neighbourhood of # = 0, we notice that equation (4.14) admits for
the forcing (i) at # = 0 the solution

Jo(x;0) = tanh (z) [5 tanh?(x) — 3], (A 26)

which, however, violates the regularity conditions (4.6), and therefore is not an
eigenfunction corresponding to o = 0, as already noted. Nevertheless, for x in a
neighbourhood of 0, it might be possible to use this solution as an ‘inner’ one and to
satisfy condition (4.6) by matching it with an ‘outer’ solution, which in this case is
required already at order O(1). Such an analysis is not pursued here, but is
supplemented by the numerical calculations given in §4b and Appendix B.

For the case (ii) forcing, we fix 4 = 4 and let « vary, and we have the stationary
solutions with ¢ =0 for a = v(v+1), v =2,3,.... The first two are

ay =6, fo(x;a,) =sech?(x), (A 27)
a, =12, fi(x;a,) = sech? (x) tanh (). (A 28)

The above procedure of determining the eigenvalues and eigenfunctions now with a
perturbation of the parameter o = o, +se can be applied here in close analogy. The
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Stability of forced steady solitary waves 461

presence of the first order term —s(d/dx)[sech?® (x)fy(x;,)] in equation of O(¢) in
analogy with the term s(d/dz)fy(x;u,) in (A 6) merely changes the numerical
expressions for o, and o, (and the role played by the signature s). Thus we obtain the
result for o as

o (oty+ s€) = se18 4 0(e?), (A 29)
. 1616 ;16 3
oo, +8€) =¢€ \/1058 +6105s+0(e§), (A 30)

and the corresponding asymptotic expansion for the eigenfunctions shows that for
v = 0 (or more general for v even) there is no solution for s = —1, i.e. for & < «,. Since
by (A 29), o has its leading term real, the forced solitary wave (2.5) is unstable for
o > o, but the analysis on linear theory fails to provide any information for & < .
The expression (A 30) for o shows that the stationary state { is unstable for o on
both sides of a,, growing at a rate of order O(é}) for a < a,, and at a slower rate of
O(e) for @ > a,. In the latter case, perturbations evolve with a periodic oscillation for
a > a, due to the O(¢) imaginary part of o, much in analogy with x> 4 and u < 4
of case (i).

Appendix B. Global spectral analysis

The (numerically assisted) study of the power series expression for f(z) in (4.25)
provides accurate approximations to eigenvalues and eigenfunctions of the operator
£, when o and p are far from the special parameter values corresponding to
o = 0. In this Appendix we report the details of this analysis, where again, for
definiteness, we choose to work with the forcing case (i), i.e. a = 12.

The starting point is the expression (4.28) for f(z). The algebra is simplified if we
remove the singular behaviour at z = 0, 1 by setting

f@) = [29/(1—2)9]p(2), (B 1)
so that (4.25) reduces to

@ Az—i—B@ Oz2+Dz+E’d_p Fz+G

dz®  2(1—2) PN 2(1—z? dz zz(l—z)2p=0’ (B 2)
where A=-6, B=3(k+1),
C=—6, D=6(1—k), B=3(c+1)+1-1n] (B 3)
F=-24, G=12(k,+1). |
The power series
pz) = X a,2" (B 4)
n=0

is a solution of (B 2) if the coefficients {a,} satisfy the second-order difference
equation

Q(n)ay+P(n)a, +R(n)a, , =0, (B 5)
where

Q) = (n+1) [(n—1) n+3(ky + 1) n+ 3k, (ky + 1) + 1 —1u],
Pn) =n[—2(n—1) (n—2)—3B+x,) (n—1)+6(1—k,)]+12(k; + 1), } (B 6)
R(n) = (n—1) (n—2) (n—3)+6(n—1) (n—2)—6(n—1)—24.
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Let us first check if certain values of the parameters u, o exist such that the series
terminates. For this to be the case, we must have

ay, #0, ay=ay,, =0, (B7)
for some integer N > 0, by which (B 5) is reduced to
RWNyay_, =0, (B 8)
and since R(n) = (n+1) (n+3) (n—4), this has only one solution,
N=+4 (B9)
Therefore a, = 0 and so
_PE) RE) [_ P(2) R(2)]P(3) R(3)
@@ om ™ Tl "ewlem T o)
_ P1) R(l)][R(3)_P(3)P(2)] R(2)P(3) B 10
|~ G a Lo~ e o g ® 1
Since
a; = —[P(0)/Q(0)] (B 11)
and a, # 0, the final equation for 4, ¢ becomes
[P(O)P(l)_R(l)] [R(Q)_P(3)P(2)]+P(3)R(2)P(0) -0 (B 12)
QRO QMILRAB) @B)RE2)] QB)R2)QO)
After some lengthy calculations, this reduces to
(463 —p1) (—4) = 0, (B 13)
hence nw=4, any «k;; or k, =3ivu any p>0. (B 14)

In the first case, solving for a,,, n = 1, 2, 3 in (B 5), we retrieve the solution found by
Jeffrey & Kakutani (1972), i.e. a third-order polynomial in z times the factor
2“1(1—2)™, which becomes, in the original independent variable x,

flx) = e9%[k;(k;— 1)+ e {k;(k;— 1) — (2«;— 1) tanh & + tanh? z}], (B 15)

for j =1, 2, 3. The other case in (B 14) has already been considered in §4a for the
perturbation expansions, since by (4.27) it implies o = 0.

With the exception of the above two particular cases, the difference equation (B 5)
does not seem to have a closed form solution in general, but it does show that the
series (B 4) has a radius of convergence equal to 1. Therefore the eigenvalue o can be
calculated to any desired order of accuracy, limited only by the round-off error, by
summing the two series in (4.28) numerically, one about z = 0 and the other about
z =1, and matching the two expansions at some intermediate point. By requiring
continuity of the functions and the derivatives up to the second order, which of
course can be determined analytically by differentiating the power series, the
eigenvalues o are therefore the roots of

p)  [(I=2)97g,(1=2)]  [(1—2)gy(1—2)]
det | p'(z) [(1—2)9"q(1—2)]" [(1—2)9gy(1—2)]" | =0, (B 16)
PR [(I=2) 9 qy(1=2)]" [(1—2)7"%q(1—2)]"
where (+)" denotes derivative with respect to z, and the determinant depends on o
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Stability of forced steady solitary waves 463
Table 1
s € o (by series) o (by perturbation theory)

forcing (i) p = 4+se

—1 0.1 0.109531+4.164 x 1073 0.1088i+4.44 x 107°
—1 0.01 0.03444i+4.41x10™* 0.0344261+4.44 x 1074
+1 0.01  0.033967 0.033 982
forcing (i) p = 9—e¢
0.1 0.01426 0.01441
forcing (ii) & = 124se

+1 0.1 0.083 1841+ 2.4861 x 1073 0.0823i+2.54x 1073
+1 0.01  0.026052i+2.534 x 1074 0.026 0241 +2.54 x 10~

through the indices «;. Here g, and g, are the power series obtained from h,, and A,
in (4.28) via multiplication by the (analytic at z = 1) factor 2. Their coefficients can
be easily determined by the difference equation (B 5), using —«, rather than «, in the
definitions (B 3) and setting n —>n+k, —k;, j = 2, 3. Choosing a point z sufficiently far
removed from 0 and 1, the power series involved in (B 16) have a fast convergence rate
and the roots of equation (B 16) can be found by a Newton—Raphson scheme.

Table 1 provides a comparison between some of the eigenvalues found by the
present numerical procedure and the corresponding ones evaluated by the
perturbation techniques of the Appendix A.

Thus we see that in the domains of parameter values where both numerical and
perturbation approach can be expected to be valid (i.e. ¢ not ‘too small’ for the power
series approach and ¢ not ‘too big’ for the perturbation analysis) the agreement is
quite satisfactory.

Appendix C. A hamiltonian system and its conservation laws

We briefly report here, for the convenience of the reader, some of the results
mentioned in the text regarding the application of Noether’s first theorem
(Bogoliubov & Shirkov 1980, §2) to the evolution equations of interest.

Introducing the potential ¢

8, t) = Py(,1), (C1)

a lagrangian for the fKdV equation (2.1) can be written as (see Whitham 1974,
§16.14) | fre

2@ =3 | Wbt g~ 6P 41 ©2)

as one can check by the Euler-Lagrange equations,
(d/dt) 8L /3¢, —0L 8¢ = 0, (C3)

which reproduces equation (2.1), after using the similarity transformation (3.3). We
note that (C 2) has a structure similar to a lagrangian describing the scattering of a
field by an external one, whose evolution is not affected by the interaction (see
Bogoliubov & Shirkov 1980, §24). By Noether’s first theorem, if

¢ (@, ) = p(a, t)+dp(x,t) (C4)
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is a one-parameter transformation, £ say, of the field ¢ and the coordinates z, ¢, for
which,

L(P) = L(p)+(d/dl) F(; ), (C5)
then the quantity
_ 8,2” 0¢’ ) 0F
0= (] a5 el )l ©9

is a constant of motion. Now, from the structure of the lagrangian (C 2), it is obvious
that we have invariance under the transformation

(@) = p(x,t)+E F =0, (C7)
and so, according to (C 6),

1

+ 00 1 + 00

is conserved. The spatial translation

(@', 1) = p(x+E,1) (©9)

does not yield the form (C 5) for the transformed lagrangian unless P(x) = const., in

which case it is easy to verify that # = 0 and the associated conserved quantity is
1 +00 1 + 00

== 2de = 3 Cdx. (C 10)

2 —c0 —o0

If the forcing P is independent of time, then translation with respect to time

(') = p(a,t+§) (C11)
when £ is infinitesimal, leads to a transformed lagrangian
L(P) = L(p)+E(d/dt) Z(¢)+0(E?), (€ 12)

and so (C 5) holds with # = %, and the associated conserved quantity is
= Sg a¢ _ 1 [t
%_(J 8¢t Gt) gnQJ_ (up7— 3%+ ¢%. —6P(x) ¢,] dx

= %ﬁrw (G =38+ —6P(x) (] da, (C 13)

which is the hamiltonian considered in the text. There are no other obvious
invariances possessed by the lagrangian for a general forcing P(x). For the
regularized fKdV equation (5.27), the lagrangian (C 2) has to be modified into

and the invariants corresponding to the one-parameter transformations considered
above are
1

8 = Qfm (&4 &) de, (C 15)
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1 + 00
and H, = EJ [6(F—1)2—983+FE —6P(x){]dx, (C 16)

for (C9), when P is a constant, and for (C 11), respectively.
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igure 4. Subdivision of the parametric uv(x)-plane for the existence of eigenvalues of the operator

Z, .- In the shaded region no eigenvalue with real part different from zero can exist.
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